Title of article :
Carnegie Airborne Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor fusion
Author/Authors :
Asner، نويسنده , , Gregory P. and Knapp، نويسنده , , David E. and Boardman، نويسنده , , Joseph and Green، نويسنده , , Robert O. and Kennedy-Bowdoin، نويسنده , , Ty and Eastwood، نويسنده , , Michael and Martin، نويسنده , , Roberta E. and Anderson، نويسنده , , Christopher and Field، نويسنده , , Christopher B.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
12
From page :
454
To page :
465
Abstract :
The Carnegie Airborne Observatory (CAO) was developed to address a need for macroscale measurements that reveal the structural, functional and organismic composition of Earthʹs ecosystems. In 2011, we completed and launched the CAO-2 next generation Airborne Taxonomic Mapping Systems (AToMS), which includes a high-fidelity visible-to-shortwave infrared (VSWIR) imaging spectrometer (380–2510 nm), dual-laser waveform light detection and ranging (LiDAR) scanner, and high spatial resolution visible-to-near infrared (VNIR) imaging spectrometer (365–1052 nm). Here, we describe how multiple data streams from these sensors can be fused using hardware and software co-alignment and processing techniques. With these data streams, we quantitatively demonstrate that precision data fusion greatly increases the dimensionality of the ecological information derived from remote sensing. We compare the data dimensionality of two contrasting scenes — a built environment at Stanford University and a lowland tropical forest in Amazonia. Principal components analysis revealed 336 dimensions (degrees of freedom) in the Stanford case, and 218 dimensions in the Amazon. The Amazon case presents what could be the highest level of remotely sensed data dimensionality ever reported for a forested ecosystem. Simulated misalignment of data streams reduced the effective information content by up to 48%, highlighting the critical role of achieving high precision when undertaking multi-sensor fusion. The instrumentation and methods described here are a pathfinder for future airborne applications undertaken by the National Ecological Observatory Network (NEON) and other organizations.
Keywords :
Macroscale ecology , Imaging spectroscopy , LiDARLight detection and ranging , Hyperspectral , airborne remote sensing , cao , Data fusion
Journal title :
Remote Sensing of Environment
Serial Year :
2012
Journal title :
Remote Sensing of Environment
Record number :
1632430
Link To Document :
بازگشت