Title of article :
The prediction for gas chromatographic retention index of disulfides on stationary phases of different polarity
Author/Authors :
Gao، نويسنده , , Yuhong and Wang، نويسنده , , Yawei and Yao، نويسنده , , Xiaojun and Zhang، نويسنده , , Xiaoyun and Liu، نويسنده , , Mancang and Hu، نويسنده , , Zhide and Fan، نويسنده , , Botao، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2003
Pages :
9
From page :
229
To page :
237
Abstract :
Quantitative structure–retention relationship (QSRR) models for the gas chromatographic (GC) Kaváts indices of disulfides on four different polarity stationary phase have been developed. Semi-empirical quantum chemical method (AM1) implemented in hyperchem 4.0 was employed to calculate a set of molecular descriptors of 50 disulfides. The four stationary phases in the research were: Apiezon M, OV-17, Triton X-305 and PEG-1000. By using multiple linear regression (MLR), we obtained four empirical functions with high correlation coefficient (R1=0.995, R2=0.994, R3=0.990, R4=0.976). At the same time, using Thin Plat Spline the Radial Basis Function neural networks models were obtained with root mean squared error (RMS) of training set (RMST1=0.013351, RMST2=0.012973, RMST3=0.023228, RMST4=0.020755) and RMS of validation set (RMSV1=0.007626, RMSV2=0.005897, RMSV3=0.005109, RMSV4=0.007377) and RMS of testing set (RMSX1=0.016676, RMSX2=0.016704, RMSX3=0.017162, RMSX4=0.014755). The results indicated that the QSRR models proposed were very satisfactory.
Keywords :
multiple linear regression , molecular descriptors , Radial basis function , Quantitative structure–retention relationships , neural network
Journal title :
Talanta
Serial Year :
2003
Journal title :
Talanta
Record number :
1643704
Link To Document :
بازگشت