• Title of article

    Acceleration feedback control of human-induced floor vibrations

  • Author/Authors

    Dيaz، نويسنده , , Ivلn M. and Reynolds، نويسنده , , Paul، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2010
  • Pages
    11
  • From page
    163
  • To page
    173
  • Abstract
    Active vibration control (AVC) via a proof-mass actuator is considered to be a suitable technique for the mitigation of vibrations caused by human motions in floor structures. It has been observed that actuator dynamics strongly influence structure dynamics despite considering collocated actuator/sensor control. The well-known property of the interlacing of poles and zeros of a collocated control system is no longer accomplished. Therefore, velocity-based feedback control, which has been previously used by other researchers, might not be a good solution. This work presents a design process for a control scheme based on acceleration feedback control with a phase-lag compensator, which will generally be different from an integrator circuit. This first-order compensator is applied to the output (acceleration) in such a way that the relative stability and potential damping to be introduced are significantly increased accounting for the interaction between floor and actuator dynamics. Additionally, a high-pass filter designed to avoid stroke saturation is applied to the control signal. The AVC system designed according to this procedure has been assessed in simulation and successfully implemented in an in-service open-plan office floor. The actual vibration reductions achieved have been approximately 60% for walking tests and over 90% for a whole-day vibration monitoring.
  • Keywords
    active control , structural control , Floor vibration , Acceleration feedback , Saturated control , Human-induced vibration
  • Journal title
    Engineering Structures
  • Serial Year
    2010
  • Journal title
    Engineering Structures
  • Record number

    1644492