Title of article :
Predicting moisture state of timber members in a continuously varying climate
Author/Authors :
Svensson، نويسنده , , Staffan and Turk، نويسنده , , Goran and Hozjan، نويسنده , , Tomaz، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
7
From page :
3064
To page :
3070
Abstract :
A prerequisite for a sensible estimate of moisture induced stresses in timber members is an accurate prediction of the members’ moisture states during their service life. There are, however, an infinite number of possible moisture states for an arbitrary timber member in a natural varying climate. The naturally varying humidity is possible to describe as harmonic cycles, with different periods, superimposed. This work presents realizations of envelop curves over the possible moisture states in a timber member for some carefully chosen harmonic humidity variations. The calculations, on which the realizations were made, are based on a fully coupled transport model including a model for the influential sorption hysteresis of wood. A format containing required information suitable for assessing the “moisture” action on timber members is proposed. In addition it is illustrated how a model of high complexity and nonlinearity renders results with large degree of consistency. Large moisture gradients in a timber member are detected when variations of the humidity are frequent (daily period) and with large amplitude at high humidity levels. Overall and complete moisture changes of structural timber members with normal dimensions are found for members subjected to varying humidity with long (annual) periods. A timber member’s initial moisture state in relation to the ambient humidity can have a significant influence on both moisture gradients and overall moisture change of the member.
Keywords :
Coupled moisture transport , Sorption hysteresis , Varying natural humidity conditions
Journal title :
Engineering Structures
Serial Year :
2011
Journal title :
Engineering Structures
Record number :
1646223
Link To Document :
بازگشت