Title of article :
A numerical model of the structural behavior of buckling-restrained braces
Author/Authors :
Lَpez-Almansa، نويسنده , , F. and Castro-Medina، نويسنده , , J.C. and Oller، نويسنده , , S.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
10
From page :
108
To page :
117
Abstract :
This work presents a numerical model of the cyclic structural behavior of dissipative buckling-restrained braces, commonly used as an alternative to classical concentric braces for seismic protection of building frames and other structures. Such devices are usually composed of a slender steel core embedded in a stockiest casing that is intended to prevent its buckling when it is under compression. The casing is made either of mortar or steel, and a sliding interface is interposed between the core and the casing to prevent excessive shear stress transfer. The behavior of the steel core is described by a damage and plasticity model; the behavior of the mortar casing is described by an isotropic damage model and the sliding behavior of the interface is described by a contact penalty model. These three models are implemented in the Abaqus software package following an explicit formulation. The ability of this algorithm to reproduce the cyclic behavior of buckling-restrained braces is verified in a number of representative yet simple situations. The accuracy of the proposed model is checked by comparison with experimental results; a satisfactory agreement is obtained. Preliminary conclusions are issued and further research needs are identified.
Keywords :
Numerical simulation , plasticity , Damage model , passive control , Energy dissipators , Buckling-restrained braces
Journal title :
Engineering Structures
Serial Year :
2012
Journal title :
Engineering Structures
Record number :
1647094
Link To Document :
بازگشت