Title of article :
BV AS A NON SEPARABLE DUAL SPACE
Author/Authors :
AHMADI LEDARI، A نويسنده Department of Mathematics, University of Sistan and Baluchestan, Zahedan, I. R. of Iran , , HORMOZI، M نويسنده University of Gothenburg, Chalmers University of Technology, Gotheburg, Sweden ,
Issue Information :
فصلنامه با شماره پیاپی 0 سال 2010
Pages :
8
From page :
237
To page :
244
Abstract :
Let C be a field of subsets of a set I. Also, let ? ?? ? ? ? 1 i i ? be a non-decreasing positive sequence of real numbers such that 1, 1 0 1 ? ? i ? ? and ?? ? ? ? 11 i i ? . In this paper we prove that ?BV of all the games of ?-bounded variation on C is a non-separable and norm dual Banach space of the space of simple games on C . We use this fact to establish the existence of a linear mapping T from ?BV onto F A (finitely additive set functions) which is positive, efficient and satisfies a weak form of symmetry, namely invariance under a semigroup of automorphisms of ?I,C?.
Journal title :
Iranian Journal of Science and Technology Transaction A: Science
Serial Year :
2010
Journal title :
Iranian Journal of Science and Technology Transaction A: Science
Record number :
1654718
Link To Document :
بازگشت