Title of article
Hydrogen dissociation and diffusion on transition metal (= Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces
Author/Authors
Pozzo، نويسنده , , M. and Alfè، نويسنده , , D.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2009
Pages
9
From page
1922
To page
1930
Abstract
The kinetics of hydrogen absorption by magnesium bulk is affected by two main activated processes: the dissociation of the H2 molecule and the diffusion of atomic H into the bulk. In order to have fast absorption kinetics both activated processed need to have a low barrier. Here we report a systematic ab initio density functional theory investigation of H2 dissociation and subsequent atomic H diffusion on TM (= Ti, V, Zr, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces. The calculations show that doping the surface with TMs on the left of the periodic table eliminates the barrier for the dissociation of the molecule, but the H atoms bind very strongly to the TM, therefore hindering diffusion. Conversely, TMs on the right of the periodic table do not bind H, however, they do not reduce the barrier to dissociate H2 significantly. Our results show that Fe, Ni and Rh, and to some extent Co and Pd, are all exceptions, combining low activation barriers for both processes, with Ni being the best possible choice.
Keywords
Hydrogen absorption , First Principles Calculations , Metal hydrides
Journal title
International Journal of Hydrogen Energy
Serial Year
2009
Journal title
International Journal of Hydrogen Energy
Record number
1657200
Link To Document