• Title of article

    Hydrogen dissociation and diffusion on transition metal (= Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces

  • Author/Authors

    Pozzo، نويسنده , , M. and Alfè، نويسنده , , D.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    9
  • From page
    1922
  • To page
    1930
  • Abstract
    The kinetics of hydrogen absorption by magnesium bulk is affected by two main activated processes: the dissociation of the H2 molecule and the diffusion of atomic H into the bulk. In order to have fast absorption kinetics both activated processed need to have a low barrier. Here we report a systematic ab initio density functional theory investigation of H2 dissociation and subsequent atomic H diffusion on TM (= Ti, V, Zr, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces. The calculations show that doping the surface with TMs on the left of the periodic table eliminates the barrier for the dissociation of the molecule, but the H atoms bind very strongly to the TM, therefore hindering diffusion. Conversely, TMs on the right of the periodic table do not bind H, however, they do not reduce the barrier to dissociate H2 significantly. Our results show that Fe, Ni and Rh, and to some extent Co and Pd, are all exceptions, combining low activation barriers for both processes, with Ni being the best possible choice.
  • Keywords
    Hydrogen absorption , First Principles Calculations , Metal hydrides
  • Journal title
    International Journal of Hydrogen Energy
  • Serial Year
    2009
  • Journal title
    International Journal of Hydrogen Energy
  • Record number

    1657200