Title of article :
Biohydrogen production from beet molasses by sequential dark and photofermentation
Author/Authors :
?zgür، نويسنده , , Ebru and Mars، نويسنده , , Astrid E. and Peksel، نويسنده , , Begüm and Louwerse، نويسنده , , Annemarie and Yücel، نويسنده , , Meral and Gündüz، نويسنده , , Ufuk and Claassen، نويسنده , , Pieternel A.M. and Ero?lu، نويسنده , , ?nci، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
7
From page :
511
To page :
517
Abstract :
Biological hydrogen production using renewable resources is a promising possibility to generate hydrogen in a sustainable way. In this study, a sequential dark and photofermentation has been employed for biohydrogen production using sugar beet molasses as a feedstock. An extreme thermophile Caldicellulosiruptor saccharolyticus was used for the dark fermentation, and several photosynthetic bacteria (Rhodobacter capsulatus wild type, R. capsulatus hup− mutant, and Rhodopseudomonas palustris) were used for the photofermentation. C. saccharolyticus was grown in a pH-controlled bioreactor, in batch mode, on molasses with an initial sucrose concentration of 15 g/L. The influence of additions of NH4+ and yeast extract on sucrose consumption and hydrogen production was determined. The highest hydrogen yield (4.2 mol of H2/mol sucrose) and maximum volumetric productivity (7.1 mmol H2/Lc.h) were obtained in the absence of NH4+. The effluent of the dark fermentation containing no NH4+ was fed to a photobioreactor, and hydrogen production was monitored under continuous illumination, in batch mode. Productivity and yield were improved by dilution of the dark fermentor effluent (DFE) and the additions of buffer, iron-citrate and sodium molybdate. The highest hydrogen yield (58% of the theoretical hydrogen yield of the consumed organic acids) and productivity (1.37 mmol H2/Lc.h) were attained using the hup− mutant of R. capsulatus. The overall hydrogen yield from sucrose increased from the maximum of 4.2 mol H2/mol sucrose in dark fermentation to 13.7 mol H2/mol sucrose (corresponding to 57% of the theoretical yield of 24 mol of H2/mole of sucrose) by sequential dark and photofermentation.
Keywords :
biohydrogen , Dark fermentation , Photofermentation , Molasses
Journal title :
International Journal of Hydrogen Energy
Serial Year :
2010
Journal title :
International Journal of Hydrogen Energy
Record number :
1658957
Link To Document :
بازگشت