Title of article :
Self-ignition combustion synthesis of LaNi5 utilizing hydrogenation heat of metallic calcium
Author/Authors :
Yasuda، نويسنده , , Naoto and Sasaki، نويسنده , , Shino and Okinaka، نويسنده , , Noriyuki and Akiyama، نويسنده , , Tomohiro، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
7
From page :
11035
To page :
11041
Abstract :
This paper describes self-ignition combustion synthesis (SICS) of LaNi5 in a pressurized hydrogen atmosphere using metallic calcium as both the reducing agent and the heat source. In this study, the effects of hydrogen on the ignition temperature and the hydrogenation properties of the products were mainly examined. In the experiments, La2O3, Ni, and Ca were dry-mixed in the molar ratio of 1:10:6 and then heated up at a hydrogen pressure of 1.0 MPa until the ignition due to the hydrogenation of calcium. For the sake of comparison, the same experiments were performed in a normal argon atmosphere. The results showed that the ignition temperature was drastically lowered by hydrogen; it was only 600 K in the case of hydrogen as compared to 1100 K in the case of argon. The products also exhibited high initial activity and hydrogen storage capacity of 1.54 mass%. The proposed method offers many benefits for using cost-effective rare-earth oxide, saving productive time and energy, improving initial activity of the product and applying to any AB5-type hydrogen storage alloy.
Keywords :
Combustion synthesis , Calciothermic reduction , Gas–solid reaction , Hydrogen storage alloy , LaNi5
Journal title :
International Journal of Hydrogen Energy
Serial Year :
2010
Journal title :
International Journal of Hydrogen Energy
Record number :
1663092
Link To Document :
بازگشت