Title of article :
Surface chemical analysis and chromatographic characterization of polyethylenimine-coated hydroxyapatite with various amount of polyethylenimine
Author/Authors :
Murakami، نويسنده , , Yukiko and Sugo، نويسنده , , Ken-ichi Hirano، نويسنده , , Masahiro and Okuyama، نويسنده , , Tsuneo، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2011
Abstract :
Polyethylenimine (PEI) has been widely used as a coating material to produce stationary phase for ion-exchange chromatography of biomolecules. However, a precise study of the PEI coating fraction has been lacking, despite such quantification being very important for fundamental research as well as identifying further industrial applications.
s study, we produced four types of PEI-coated hydroxyapatite (PEI-HAp) with various fractions of PEI (0.16%, 0.5%, 1.0%, 1.5%) using a spray-drying system to evaluate correlations between coating fractions and the thermochemical or chromatographic behaviors of theses products. The thermal analyses of these matrices showed two exothermic peaks when the PEI coating fraction exceeded 1.0%. The one peak indicated a PEI decomposition peak and the other would indicate bond dissociation of PEI layers formed over the HAp surface as the PEI concentration increased. Furthermore, the chromatographic analysis for the surface chemical characteristics showed the correlation between coating fraction and the retention time of protein or nucleotide. Acidic or phosphorylated proteins were more strongly adsorbed as the PEI coating fraction increased when the initial coating fraction was low, but at fraction exceeding 0.5%, constant retention was observed. The retention time of nucleotides increased in proportion to the fraction of PEI added. The good selectivity of PEI-HAp may be attributable to multifunctional interactions of electrostatic and bare Ca sites on HAp, not just the amino sites of PEI. These precise studies of PEI coating fraction are our original novel contributions, which could be achieved by quantitative consideration using thermal analysis and chromatography.
Keywords :
chromatography , Hydroxyapatite , Polyethylenimine , Surface functionalization , Phosphorylated protein