Title of article :
Improved hydrogen desorption properties of ammonia borane by Ni-modified metal-organic frameworks
Author/Authors :
Si، نويسنده , , Xiao-liang and Sun، نويسنده , , Li-xian and Xu، نويسنده , , Fen and Jiao، نويسنده , , Cheng-li and Li، نويسنده , , Fen and Liu، نويسنده , , Shu-Sheng and Zhang، نويسنده , , Jian and Song، نويسنده , , Li-fang and Jiang، نويسنده , , Chunhong and Wang، نويسنده , , Shuang and Liu، نويسنده , , Ying-Liang and Sawada، نويسنده , , Yutaka، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
7
From page :
6698
To page :
6704
Abstract :
Ammonia borane (AB) has attracted intensive study because of its low molecular weight and abnormally high gravimetric hydrogen capacity. However, the slow kinetics, irreversibility, and formation of volatile materials (borazine and ammonia) of AB limit its practical application. In this paper, new strategies by doping AB in metal-organic framework MIL-101 (denoted as AB/MIL-101) or in Ni modified MIL-101 (denoted as AB/Ni@MIL-101) are developed for hydrogen storage. In AB/MIL-101 samples, dehydrogenation did not present any induction period and undesirable by-product borazine, and decomposition thermodynamics and kinetics are improved. For AB/Ni@MIL-101, the peak temperature of AB dehydrogenation was shifted to 75 °C, which is the first report of such a big decrease (40 °C) in the decomposition temperature of AB. Furthermore, borazine and ammonia emissions that are harmful for proton exchange membrane fuel cells, were not detected. The interaction between AB and MIL-101 is discussed based on both theoretical calculations and experiments. Results show that Cr–N and B–O bonds have generated in AB/MIL-101 nanocomposites, and the decomposition mechanism of AB has changed.
Keywords :
Hydrogen storage , MOFs , Confinement , Ammonia borane
Journal title :
International Journal of Hydrogen Energy
Serial Year :
2011
Journal title :
International Journal of Hydrogen Energy
Record number :
1665699
Link To Document :
بازگشت