Title of article :
Pt decorated PdAu/C nanocatalysts with ultralow Pt loading for formic acid electrooxidation
Author/Authors :
Chen، نويسنده , , Guoqin and Liao، نويسنده , , Mengyin and Yu، نويسنده , , Biqing and Li، نويسنده , , Yunhua and Wang، نويسنده , , Dong and You، نويسنده , , Guirong and Zhong، نويسنده , , Chuan-Jian and Chen، نويسنده , , Bing H.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
8
From page :
9959
To page :
9966
Abstract :
Understanding how the pathway of formic acid electrooxidation depends on the composition and structure of Pt or Pd atoms on the surface of Pd- or Pt-based nanoparticles is important for designing catalysts aiming toward active, selective, stable, and low-cost. This work reports new findings of the investigation of submonolayer Pt decorated PdAu/C nanocatalysts (donated as Pt-PdAu/C) for formic acid electrooxidation. The Pt-PdAu/C are synthesized via a spontaneous displacement reaction and characterized by an array of analytical techniques including transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The electrocatalytic activity is examined using cyclic voltammetric and chronoamperometric measurements. The results show that the as-prepared Pt-PdAu/C with an optimal Pt:Pd atomic ratio of 1:100 exhibits enhanced electrocatalytic activity for formic acid electrooxidation compared with the PdAu/C and commercial the Pt/C catalysts. The oxidation potential on the Pt-PdAu/C shifts negatively by about 200 mV compared with that of the PdAu/C. The enhanced electrocatalytic activity and stability are attributed to the replacement of the Pd atom layer by Pt atoms, which significantly reduces the presence of the so-called "three neighboring site" of Pd or Pt atoms in the Pt-PdAu/C to efficiently suppress CO formation. The enhanced activity/stability and ultralow Pt loading of the Pt-PdAu/C have implications to the development of commercially-viable catalysts for application in direct formic acid fuel cells and catalysis.
Keywords :
Displacement reaction , Fuel cells , Platinum submonolayer , Formic acid electrooxidation , Core-shell nanocatalyst
Journal title :
International Journal of Hydrogen Energy
Serial Year :
2012
Journal title :
International Journal of Hydrogen Energy
Record number :
1672068
Link To Document :
بازگشت