Title of article :
Development of a polyaniline nanofiber-based carbon monoxide sensor for hydrogen fuel cell application
Author/Authors :
Liu، نويسنده , , Chuanjun and Noda، نويسنده , , Zhiyun and Sasaki، نويسنده , , Kazunari and Hayashi، نويسنده , , Kenshi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
The sensing of carbon monoxide (CO) impurity contained in hydrogen fuel is a challenging work in the field of low temperature proton exchange membrane fuel cell (PEMFC). In the present work a chemiresistive gas sensor based on polyaniline (PANI) nanofibers was developed to detect CO in hydrogen. The sensor was fabricated by a template-free electrochemical polymerization of aniline on an interdigitated electrode. The most distinctive feature of the fabricated sensor was the formation of a horizontally oriented, monolayered PANI nanofiber network on the insulating gap area. The gas sensing character of the PANI nanosensor was evaluated by measuring the change in electrical resistance when gas atmosphere was changed from pure hydrogen to mixtures of CO in hydrogen. The results demonstrated that the PANI nanosensor had an excellent responding ability on CO in hydrogen with a concentration as low as 1 ppm. The influences of parameters, such as nanostructure, doping level, dopants, and CO concentrations, on the sensing characters of the nanosensor were discussed. The responding mechanism was attributed to the different binding sites of CO and H2 with PANI: H2 with the protonated amine nitrogen atoms and CO with the unprotonated amine nitrogen atoms. In view of its novel sensing mechanism and high sensing performance, the fabricated sensor is very promising to be applied as a new type of CO sensor to prevent the catalysis poisoning of PEMFC.
Keywords :
Polyanilne , Hydrogen fuel , orientation , CO sensor , Fuel cell , Nanofiber
Journal title :
International Journal of Hydrogen Energy
Journal title :
International Journal of Hydrogen Energy