Title of article :
Ni/CeO2/ZSM-5 catalysts for the production of hydrogen from the pyrolysis–gasification of polypropylene
Author/Authors :
Wu، نويسنده , , Chunfei and Williams، نويسنده , , Paul T.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
11
From page :
6242
To page :
6252
Abstract :
The production of hydrogen from the two-stage pyrolysis–gasification of polypropylene using a Ni/CeO2/ZSM-5 catalyst has been investigated. Experiments were conducted on CeO2 loading, calcination temperature and Ni loading of the Ni/CeO2/ZSM-5 catalyst in relation to hydrogen production. The results indicated that with increasing CeO2 loading from 5 to 30 wt.% for the 10 wt.% Ni/CeO2/ZSM-5 catalyst calcined at 750 °C, hydrogen concentration in the gas product and the theoretical potential hydrogen production were decreased from 63.0 to 49.8 vol.% and 50.4 to 21.6 wt.%, respectively. In addition, the amount of coke deposited on the catalyst was reduced from 9.5 to 6.2 wt.%. The calcination temperature had little influence on hydrogen production for the catalyst containing 5 wt.% of CeO2. However, for the 10 wt.% Ni/CeO2/ZSM-5 catalyst with a CeO2 content of 10 or 30 wt.%, the catalytic activities reduced when the calcination temperature was increased from 500 to 750 °C. The SEM results showed that large amounts of filamentous carbons were formed on the surface of the catalysts. The investigation of different Ni content indicates that the Ni/CeO2/ZSM-5 ((2-10)-5-500) catalyst containing 2 wt.% Ni showed poor catalytic activity in relation to the pyrolysis–gasification of polypropylene according to the theoretical potential H2 production (7.2 wt.%). Increasing the Ni loading to 5 or 10 wt.% in the Ni/CeO2/ZSM-5 ((2-10)-5-500) catalyst, high potential hydrogen production was obtained.
Keywords :
Polypropylene , Cerium , Catalyst , gasification , nickel
Journal title :
International Journal of Hydrogen Energy
Serial Year :
2009
Journal title :
International Journal of Hydrogen Energy
Record number :
1675009
Link To Document :
بازگشت