Title of article :
A Volterra series representation for a class of nonlinear infinite dimensional systems with periodic boundary conditions
Author/Authors :
Guo، نويسنده , , L.Z. and Guo، نويسنده , , Y.Z. and Billings، نويسنده , , S.A. and Coca، نويسنده , , D. and Lang، نويسنده , , Z.Q.، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2013
Pages :
9
From page :
115
To page :
123
Abstract :
This paper proves the existence of a Volterra series representation for the mild solutions of a class of nonlinear infinite dimensional systems. More specifically, given the evolutionary system/operator { U ( t , s ) : 0 ≤ s ≤ t < ∞ } associated with a semilinear evolution equation ∂ u / ∂ t = ∂ 2 u / ∂ x 2 + f ( u ) , u ( 0 ) = u 0 ∈ X with periodic boundary conditions, it is proved that, under suitable conditions, the unique (mild) solution u ( t ) = U ( t , 0 ) u ( 0 ) , t ≥ 0 can be expanded by a Volterra series. A recursive algorithm is given to construct the Volterra kernels/series terms and a nonlinear heat equation is discussed to illustrate the proposed method.
Keywords :
Volterra series , Nonlinear infinite dimensional systems
Journal title :
Systems and Control Letters
Serial Year :
2013
Journal title :
Systems and Control Letters
Record number :
1676452
Link To Document :
بازگشت