Title of article :
Probabilistic Latent Semantic Indexing
Author/Authors :
Hofmann، Thomas نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Abstract :
Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. Fitted from a training corpus of text documents by a generalization of the Expectation Maximization algorithm, the utilized model is a.ble to deal with domain-specific synonymy as well as with polysemous words. In contrast to standard Latent Semantic Indexing (LSI) by Singular Value Decomposition, the probabilistic variant has a solid statistical foundation and defines a proper generative data model. Retrieval experiments on a number of test collections indicate substantial performance gains over direct term matching methods as well as over LSI. In particular, the combination of models with different dimensionalities has proven to be adva.ntageous.
Keywords :
Digital library , archival documents
Journal title :
SIGIR FORUM
Journal title :
SIGIR FORUM