Title of article :
Carbon nanotube shuttle memory device based on singlewall-to-doublewall carbon nanotube transition
Author/Authors :
Kang، نويسنده , , Jeong-Won and Hwang، نويسنده , , Ho Jung، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
8
From page :
338
To page :
345
Abstract :
This paper shows the schematics, the energetics, and the operations of nonvolatile-nanomemory-element based on carbon nanopeapods using classical molecular dynamics simulations. The system proposed was composed of one-side-capped (10, 10) and a (5, 5) carbon nanotubes. The open ends of two (10, 10) carbon nanotubes were face to face with the separation of 14 إ distance. The inner C180 carbon nanotube, which was formed by the coalescence of three C60 molecules, shuttled between two (10, 10) carbon nanotubes under the alternatively applied force fields. Since the inner carbon nanotube can hardly escape from the outer carbon nanotubes without external force fields, the proposed system can operate a nonvolatile memory device. To switch the carbon nanotube shuttle system, the external electric fields to overcome the restoring force as well as the cap-capturing force should be applied. Classical molecular dynamics simulations showed that the carbon nanotube shuttle memory element could be operated by an adequate external force field.
Keywords :
Singlewall-to-doublewall carbon nanotube transition , Shuttle memory device , Nanopeapod , memory device , Molecular dynamics simulation
Journal title :
Computational Materials Science
Serial Year :
2005
Journal title :
Computational Materials Science
Record number :
1680858
Link To Document :
بازگشت