Title of article :
Computer simulation of buckling behavior of double-walled carbon nanotubes with abnormal interlayer distances
Author/Authors :
Zhang، نويسنده , , H.W. and Wang، نويسنده , , L. and Wang، نويسنده , , J.B.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
9
From page :
664
To page :
672
Abstract :
Several double-walled carbon nanotubes (DWCNTs) composed of different internal and external carbon nanotubes (CNTs) are presented and simulated by the molecular dynamics (MD) method. Interlayer distances of these novel DWCNTs are different with those of normal DWCNTs, i.e. 0.34 nm. Their initial equilibrium configurations and buckling behaviors under axial compression are simulated to examine the influence of the van der Waals force on the mechanical properties of DWCNTs. The interaction of atoms in each tube is described by the Tersoff–Brenner potential, while the van der Waals force between inner and outer walls is described by the Lennard–Jones potential. Numerical results show that the different van der Waals force coming from different interlayer spacing results in different critical buckling strain of DWCNTs under axial compression. These new DWCNTs exhibit better compressive stability as compared with the normal DWCNT.
Keywords :
Molecular dynamics , Buckling behavior , Double-walled carbon nanotube
Journal title :
Computational Materials Science
Serial Year :
2007
Journal title :
Computational Materials Science
Record number :
1682757
Link To Document :
بازگشت