Title of article
Prediction of effective thermo-mechanical properties of particulate composites
Author/Authors
Annapragada، نويسنده , , S. Ravi and Sun، نويسنده , , Dawei and Garimella، نويسنده , , Suresh V.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2007
Pages
12
From page
255
To page
266
Abstract
A micromechanics-based model is developed to predict the effective thermo-mechanical properties of energetic materials, which are composite materials made from agglomeration of particles of a range of sizes. A random packing algorithm is implemented to construct a representative volume element for the heterogeneous material based on the experimentally determined particle diameter distribution. The effective mechanical properties of the material are then evaluated through finite element modeling, while its thermal properties are determined through a finite volume approach. The model is first carefully validated against results from the literature and is then used to estimate the thermo-mechanical properties of particular energetic materials. Good agreement is found between experimental results and predictions. The stress-bridging phenomenon in the particulate materials is captured by the model. Thermodynamic averaging is shown to be a poor representation for the estimation of thermo-mechanical properties of these heterogeneous materials.
Keywords
Explosives , Effective material properties , homogenization , Representative volume element , Particulate composites , granular materials
Journal title
Computational Materials Science
Serial Year
2007
Journal title
Computational Materials Science
Record number
1682928
Link To Document