• Title of article

    Ultrathin polytyramine films by electropolymerisation on highly doped p-type silicon electrodes

  • Author/Authors

    Losic، نويسنده , , Dusan and Cole، نويسنده , , Martin and Thissen، نويسنده , , Helmut and Voelcker، نويسنده , , Nicolas H.، نويسنده ,

  • Issue Information
    هفته نامه با شماره پیاپی سال 2005
  • Pages
    13
  • From page
    245
  • To page
    257
  • Abstract
    In recent years, silicon-based materials have been used extensively in device fabrication for sensors, microfluidic and biomaterial applications. In order to enhance the performance of the material, a number of surface functionalisations are employed. However, until now, silicon has not been used as an electrode material for electrodeposition of functional polymers. Here, highly doped p-type silicon was used as an electrode facilitating the electropolymerisation of ultrathin polytyramine (PT) films by cyclic voltammetry. The influence of resistivity, pre-treatment of the silicon surface and electrochemical conditions on the electropolymerisation process was studied. The results show that ultrathin PT films with a controlled thickness from 2 to 15 nm exhibit good electrochemical stability in buffer solution (pH 6.8) over a large potential window (−1.5 V to 1.5 V) and passivating properties towards a redox probe. In terms of the film morphology, a pinhole-free smooth surface with a roughness below 0.5 nm and with dominantly globular features of 40–60 nm diameter was observed by AFM. XPS characterisation showed that PT films display amine functional groups at the coating surface. UV induced silicon oxidation was used to prepare patterned PT films.
  • Keywords
    Electropolymerisation , atomic force microscopy , X-ray photoelectron spectroscopy , surface structure , Insulating films , Growth , Cyclic voltammetry , Silicon , Polytyramine , Electrochemical methods , Surface chemical reaction
  • Journal title
    Surface Science
  • Serial Year
    2005
  • Journal title
    Surface Science
  • Record number

    1685193