• Title of article

    Comparative study of different methodologies for quantitative rock analysis by Laser-Induced Breakdown Spectroscopy in a simulated Martian atmosphere

  • Author/Authors

    Sallé، نويسنده , , B. and Lacour، نويسنده , , J.-L. and Mauchien، نويسنده , , P. and Fichet، نويسنده , , P. and Maurice، نويسنده , , S. and Manhès، نويسنده , , G.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2006
  • Pages
    13
  • From page
    301
  • To page
    313
  • Abstract
    Laser-Induced Breakdown Spectroscopy was selected by NASA as part of the ChemCam instrument package for the Mars Science Laboratory rover to be launched in 2009. ChemCamʹs Laser-Induced Breakdown Spectroscopy instrument will ablate surface coatings from materials and measure the elemental composition of underlying rocks and soils at distances from 1 up to 10 m. The purpose of our studies is to develop an analytical methodology enabling identification and quantitative analysis of these geological materials in the context of the ChemCamʹs Laser-Induced Breakdown Spectroscopy instrument performance. The study presented here focuses on several terrestrial rock samples which were analyzed by Laser-Induced Breakdown Spectroscopy at an intermediate stand-off distance (3 m) and in an atmosphere similar to the Martian one (9 mbar CO2). The experimental results highlight the matrix effects and the measurement inaccuracies due to the noise accumulated when low signals are collected with a detector system such as an Echelle spectrometer equipped with an Intensified Charge-Coupled Device camera. Three different methods are evaluated to correct the matrix effects and to obtain quantitative results: by using an external reference sample and normalizing to the sum of all elemental concentrations, by using the internal standardization by oxygen, a major element common to all studied matrices, and by applying the Calibration Free Laser-Induced Breakdown Spectroscopy method. The three tested methods clearly demonstrate that the matrix effects can be corrected merely by taking into account the difference in the amount of vaporized atoms between the rocks, no significant variation in plasma excitation temperatures being observed. The encouraging results obtained by the three methods indicate the possibility of meeting ChemCam project objectives for stand-off quantitative analysis on Mars.
  • Keywords
    Mars , Low pressure , Laser-induced breakdown spectroscopy , rock , LIBS
  • Journal title
    Spectrochimica Acta Part B Atomic Spectroscopy
  • Serial Year
    2006
  • Journal title
    Spectrochimica Acta Part B Atomic Spectroscopy
  • Record number

    1686656