• Title of article

    Direct solution introduction using conventional nebulizers with a short torch for plasma mass spectrometry

  • Author/Authors

    Westphal، نويسنده , , Craig S. and Montaser، نويسنده , , Akbar، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2006
  • Pages
    10
  • From page
    705
  • To page
    714
  • Abstract
    A new torch, a shortened version of a standard demountable torch, is proposed for facilitating direct injection of liquid samples into an inductively coupled plasma mass spectrometer using conventional and micro-pneumatic nebulizers. The proposed arrangement reduces the cost of the direct injector nebulizer by a factor of 5, typically from $2000 to $400, although a different torch is required. The analytical performance of the high efficiency nebulizer-short torch arrangement is compared to that obtained with the direct injection high efficiency nebulizer interfaced to the conventional torch. Optimum operating conditions for the high efficiency nebulizer-short torch arrangement are generally similar to those of the direct injection high efficiency nebulizer: high RF power (1500 W), low nebulizer gas flow rates (0.09 L/min) and low solution uptake rates (5–85 μL/min). Sensitivity with the high efficiency nebulizer-short torch system at 85 μL/min is improved by a factor of 2.4 on average compared to the direct injection high efficiency nebulizer, while precision values (%RSD) and detection limits are generally comparable or slightly degraded (on average by a factor of 1.7), respectively. Sensitivity is also better at lower solution uptake rates (5 μL/min) by factors ranging from 2 (82Se) to 7 (59Co) compared to the direct injection high efficiency nebulizer. Additionally, the %RSD values are better at 5 μL/min, ranging from 3.5% to 6.0% for the high efficiency nebulizer-short torch combination compared to 4.7 to 9.1% for the direct injection high efficiency nebulizer. The utility of the high efficiency nebulizer-short torch arrangement is demonstrated through the microscale flow injection analysis of Cr-DNA adducts and the analysis of four certified reference materials (Lyphochek urine metals control, SRM 1515: Apple Leaves, SRM 1570a: Spinach Leaves, SRM 1577b: Bovine Liver). Peak to peak precision values (N = 3) for the microscale flow injection analysis-high efficiency nebulizer-short torch system is 3.1% and 3.7% based on peak areas and heights, respectively, at a solution uptake rate of 85 μL/min. Good agreement is obtained between certified and measured concentrations for several elements across the mass range (e.g., Al, V, Mn, As, Cd, Pb, U). The proposed system is novel because it potentially offers a lower-cost and a more universal arrangement for improved direct solution introduction in plasma mass spectrometry using off-the-shelf commercial nebulizers.
  • Keywords
    Low-cost direct injection of liquid samples , Direct injection high efficiency nebulizer , DIHEN , inductively coupled plasma mass spectrometry , HEN-short torch arrangement , Short torch design , High efficiency nebulizer
  • Journal title
    Spectrochimica Acta Part B Atomic Spectroscopy
  • Serial Year
    2006
  • Journal title
    Spectrochimica Acta Part B Atomic Spectroscopy
  • Record number

    1686742