Title of article :
Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation
Author/Authors :
Nguyen، نويسنده , , V.-D. and Béchet، نويسنده , , E. and Geuzaine، نويسنده , , C. and Noels، نويسنده , , L.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
17
From page :
390
To page :
406
Abstract :
In order to predict the effective properties of heterogeneous materials using the finite element approach, a boundary value problem (BVP) may be defined on a representative volume element (RVE) with appropriate boundary conditions, among which periodic boundary condition is the most efficient in terms of convergence rate. The classical method to impose the periodic boundary condition requires identical meshes on opposite RVE boundaries. This condition is not always easy to satisfy for arbitrary meshes. This work develops a new method based on polynomial interpolation that avoids the need of matching mesh condition on opposite RVE boundaries.
Keywords :
Computational homogenization , FEM , Polynomial interpolation , Periodic condition , Heterogeneous Materials
Journal title :
Computational Materials Science
Serial Year :
2012
Journal title :
Computational Materials Science
Record number :
1689581
Link To Document :
بازگشت