Title of article :
Parametric model-based motion segmentation using surface selection criterion
Author/Authors :
Gheissari، نويسنده , , Niloofar and Bab-Hadiashar، نويسنده , , Alireza and Suter، نويسنده , , David، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
13
From page :
214
To page :
226
Abstract :
This paper presents a new framework for the motion segmentation task, which includes an algorithm capable of addressing the important issue of the inter-relationships between data segmentation, model selection, and noise scale estimation. In this algorithm, we have incorporated our newly proposed model selection criterion named Surface Selection Criterion. The presented algorithm simultaneously selects the correct motion model, while finding the scale of the noise and performing the segmentation task. As a result, the estimated motion parameters and the final segmentation results are accurate. The algorithm is tested for motion segmentation of synthetic and real video data containing multiple objects undergoing different types of motion. Our results also show that the proposed algorithm is capable of detecting occlusion and degeneracy.
Keywords :
Motion Segmentation , Model selection , optic flow , motion estimation
Journal title :
Computer Vision and Image Understanding
Serial Year :
2006
Journal title :
Computer Vision and Image Understanding
Record number :
1694853
Link To Document :
بازگشت