Title of article :
A general shape context framework for object identification
Author/Authors :
Chi، نويسنده , , Yanling and Leung، نويسنده , , Maylor K.H. Leung، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
A general shape context framework is proposed for object/image retrieval in occluded and cluttered environment with hundreds of models as the potential matches of an input. The approach is general since it does not require separation of input objects from complex background. It works by first extracting consistent and structurally unique local neighborhood information from inputs or models, and then voting on the optimal matches. Its performance degrades gracefully with respect to the amount of structural information that is being occluded or lost. The local neighborhood information applicable to the system can be shape, color, texture feature, etc. Currently, we employ shape information only. The mechanism of voting is based on a novel hyper cube based indexing structure, and driven by dynamic programming. The proposed concepts have been tested on database with thousands of images. Very encouraging results have been obtained.
Keywords :
Object retrieval , Shape recognition , Indexing
Journal title :
Computer Vision and Image Understanding
Journal title :
Computer Vision and Image Understanding