Title of article :
Visual word proximity and linguistics for semantic video indexing and near-duplicate retrieval
Author/Authors :
Jiang، نويسنده , , Yu-Gang and Ngo، نويسنده , , Chong-Wah Ngo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
Bag-of-visual-words (BoW) has recently become a popular representation to describe video and image content. Most existing approaches, nevertheless, neglect inter-word relatedness and measure similarity by bin-to-bin comparison of visual words in histograms. In this paper, we explore the linguistic and ontological aspects of visual words for video analysis. Two approaches, soft-weighting and constraint-based earth mover’s distance (CEMD), are proposed to model different aspects of visual word linguistics and proximity. In soft-weighting, visual words are cleverly weighted such that the linguistic meaning of words is taken into account for bin-to-bin histogram comparison. In CEMD, a cross-bin matching algorithm is formulated such that the ground distance measure considers the linguistic similarity of words. In particular, a BoW ontology which hierarchically specifies the hyponym relationship of words is constructed to assist the reasoning. We demonstrate soft-weighting and CEMD on two tasks: video semantic indexing and near-duplicate keyframe retrieval. Experimental results indicate that soft-weighting is superior to other popular weighting schemes such as term frequency (TF) weighting in large-scale video database. In addition, CEMD shows excellent performance compared to cosine similarity in near-duplicate retrieval.
Keywords :
Linguistic similarity , Visual ontology , Soft-weighting , CEMD matching , Semantic concept , Near-duplicate keyframe
Journal title :
Computer Vision and Image Understanding
Journal title :
Computer Vision and Image Understanding