Title of article :
Computational simulation of cold spray process assisted by electrostatic force
Author/Authors :
Takana، نويسنده , , Hidemasa and Ogawa، نويسنده , , Kazuhiro and Shoji، نويسنده , , Tetsuo and Nishiyama، نويسنده , , Hideya، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
8
From page :
116
To page :
123
Abstract :
The integrated model of compressible thermofluid, splat formation and coating formation for the cold spray process has been established. In-flight behavior of nano-micro particles and the interaction between the shock wave and the particles in a supersonic jet flow impinging onto the substrate and further effect of electrostatic force on the particle acceleration are clarified in detail by carrying out a real-time computational simulation. The optimal particle diameters for an impinging particle velocity exceeding critical velocity exist. Particles with the diameter of submicron interact with shock wave and particles are decelerated prior to the impact. However, the particles can be accelerated considerably by utilizing electrostatic forces even in the presence of unavoidable shock waves. Finally, based on the integrated model, the coating thickness in an electrostatic assisted cold spray process is evaluated.
Keywords :
Shock wave , Nano/micro particle , Cold spray process , electrostatic force
Journal title :
Powder Technology
Serial Year :
2008
Journal title :
Powder Technology
Record number :
1697801
Link To Document :
بازگشت