Title of article :
CO dissociation on Ni: The effect of steps and of nickel carbonyl
Author/Authors :
Ole and Engbوk، نويسنده , , Jakob and Lytken، نويسنده , , Ole and Nielsen، نويسنده , , Jane H. and Chorkendorff، نويسنده , , Ib، نويسنده ,
Issue Information :
هفته نامه با شماره پیاپی سال 2008
Abstract :
The dissociation of CO was investigated on a stepped Ni(14 13 13) crystal. The experiments show that the monoatomic steps completely dominate the dissociation of CO on the nickel surface. The activation energy for dissociation of CO along the steps is measured at 500 K to be 150 kJ/mol in the pressure range 1–7 × 10−6 mbar CO. Poisoning the steps by preadsorbing 0.05 ML sulfur, the dissociation rate was reduced by more than a factor of 50 clearly providing evidence for the step activity. Furthermore, by deliberately adding remote amounts of nickel carbonyl (0.25%) to the CO gas, it is shown that the dissociation probability of CO is increased by a factor of 60 compared to when using a purified CO gas. This clearly demonstrates the importance of avoiding nickel carbonyl when CO dissociation is studied. CO dissociation is important because it is believed to be the rate limiting step in methanation and in the Fischer–Tropsch synthesis.
Keywords :
nickel , CARBON MONOXIDE , Sulfur , CO dissociation , Fischer–Tropsch , Surface defects , Nickel carbonyl , Methanation
Journal title :
Surface Science
Journal title :
Surface Science