Title of article
Reactivity descriptors for direct methanol fuel cell anode catalysts
Author/Authors
Ferrin، نويسنده , , Peter and Nilekar، نويسنده , , Anand Udaykumar and Greeley، نويسنده , , Jeff and Mavrikakis، نويسنده , , Manos and Rossmeisl، نويسنده , , Jan، نويسنده ,
Issue Information
هفته نامه با شماره پیاپی سال 2008
Pages
8
From page
3424
To page
3431
Abstract
We have investigated the anode reaction in direct methanol fuel cells using a database of adsorption free energies for 16 intermediates on 12 close-packed transition metal surfaces calculated with periodic, self-consistent, density functional theory (DFT–GGA). This database, combined with a simple electrokinetic model of the methanol electrooxidation reaction, yields mechanistic insights that are consistent with previous experimental and theoretical studies on Pt, and extends these insights to a broad spectrum of other transition metals. In addition, by using linear scaling relations between the adsorption free energies of various intermediates in the reaction network, we find that the results determined with the full database of adsorption energies can be estimated by knowing only two key descriptors for each metal surface: the free energies of OH and CO on the surface. Two mechanisms for methanol oxidation to CO2 are investigated: an indirect mechanism that goes through a CO intermediate and a direct mechanism where methanol is oxidized to CO2 without the formation of a CO intermediate. For the direct mechanism, we find that, because of CO poisoning, only a small current will result on all non-group 11 transition metals; of these metals, Pt is predicted to be the most active. For methanol decomposition via the indirect mechanism, we find that the onset potential is limited either by the ability to activate methanol, by the ability to activate water, or by surface poisoning by CO∗ or OH∗/O∗. Among pure metals, there is no obvious candidate for a good anode catalyst, and in order to design a better catalyst, one has to look for bi-functional surfaces such as the well-studied PtRu alloy.
Keywords
Methanol , Transition metals , DFT , Electrocatalysis
Journal title
Surface Science
Serial Year
2008
Journal title
Surface Science
Record number
1703943
Link To Document