Title of article :
NMPC of an industrial crystallization process using model-based observers
Author/Authors :
Damour، نويسنده , , Cédric and Benne، نويسنده , , Michel and Boillereaux، نويسنده , , Lionel and Grondin-Perez، نويسنده , , Brigitte and Chabriat، نويسنده , , Jean-Pierre، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
This paper illustrates the benefits of a nonlinear model-based predictive control (NMPC) approach applied to an industrial crystallization process. This relevant approach proposes a setpoint tracking of the crystal mass. The controlled variable, unavailable, is obtained using an extended Luenberger observer. A neural network model is used as internal model to predict process outputs. An optimization problem is solved to compute future control actions taking into account real-time control objectives. The performances of this strategy are demonstrated via simulation in cases of setpoint tracking and disturbance rejection. The results reveal a significant improvement in terms of robustness and energy efficiency.
Keywords :
crystallization , Nonlinear model predictive control , Industrial control , Extended Luenberger observer , Artificial neural network
Journal title :
Journal of Industrial and Engineering Chemistry
Journal title :
Journal of Industrial and Engineering Chemistry