Title of article :
Fast reduction of Cr(VI) from aqueous solutions using alumina
Author/Authors :
Glorias-Garcia، نويسنده , , Fabiola and Arriaga-Merced، نويسنده , , José Miguel and Roa-Morales، نويسنده , , Gabriela and Varela-Guerrero، نويسنده , , Vيctor and Barrera-Dيaz، نويسنده , , Carlos Eduardo and Bilyeu، نويسنده , , Bryan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
7
From page :
2477
To page :
2483
Abstract :
Hexavalent chromium is challenging to remove from industrial wastewater due the solubility and anionic nature of the chromates. Cr(VI) is typically removed by reduction to Cr(III), then precipitation or adsorption, which requires multiple steps and bulk reagents and generates sludge. In this project, we have evaluated a sintered alumina disk as a single step sorbent for Cr(VI). The disk was porous enough that 20 mL samples passed through in about 3 s using light suction. A single pass through the disk only reduced the [Cr(VI)] by 10–20%, but by passing the solution through the disk five times up to 80% was removed in samples up to 130 mg/L and up to around 50% for much higher concentrations. The five passes through the filter disk took less than a minute. On each pass through the disk the characteristic chromate UV–vis absorbance decreased, the Cr(VI) concentration (by the diphenylcarbazide method) decreased, and the pH rose slightly. The XRD pattern showed no change in the crystal structure of the alumina, but the SEM/EDS identified chromium on the surface. In addition to confirming chromium on the surface of the alumina, the XPS spectra showed a change in the binding energy of the aluminum, which is consistent with complexation. The system was fast and effective (in series), so should be applicable to industrial wastewater treatment.
Keywords :
Hexavalent chromium , Adsorption , Reduction , Aqueous solutions , alumina
Journal title :
Journal of Industrial and Engineering Chemistry
Serial Year :
2014
Journal title :
Journal of Industrial and Engineering Chemistry
Record number :
1711973
Link To Document :
بازگشت