Title of article :
Electrical transport at low temperatures in dense nanocrystalline Gd-doped ceria
Author/Authors :
Pérez-Coll، نويسنده , , Domingo and Mather، نويسنده , , Glenn C.، نويسنده ,
Issue Information :
هفته نامه با شماره پیاپی سال 2010
Abstract :
Dense nanocrystalline Ce0.9Gd0.1O2 − δ (nCGO) with a median grain size of ∼ 120 nm was prepared by spark-plasma sintering of nanoscaled powders. The electrical behaviour of nCGO was analysed by impedance spectroscopy and compared with the micro-grained material of the same composition in humidified (H2O or D2O) and dry O2 in the temperature range 25–600 °C. The large volume of grain boundaries in the nanometric material is highly blocking to oxide-ions, the majority charge carriers above 100 °C, such that the impedance response in this range is dominated by the grain-boundary contribution. The much smaller grain-boundary resistance of micrometric CGO is attributable to the larger grain size rather than a different grain-boundary thickness or conductivity. Proton transport dominates the electrical conductivity of nCGO in wet atmospheres below 100 °C, as demonstrated by the presence of a conductive H+/D+ isotope effect. The absence of a measurable electromotive force in a water-based concentration cell with nCGO as separating membrane and a massively higher resistivity of nCGO samples with a blocked lateral surface both strongly indicate that the proton transport is attributable to surface processes associated with chemisorbed and physisorbed water layers rather than grain-bulk or grain-boundary phenomena. The magnitude of the room-temperature surface proton conductivity is 4–5 times greater for nanostructured Ce0.9Gd0.1O2 − δ than the micrometric analogue.
Keywords :
Ce0.9Gd0.1O2 , ? , ? , Spark-plasma sintering , Nanoceramic , Proton conduction , Grain boundary , Impedance spectroscopy , Water adsorption
Journal title :
Solid State Ionics
Journal title :
Solid State Ionics