Title of article :
Facile synthesis of oxidative copolymers from aminoquinoline and anisidine
Author/Authors :
Li، نويسنده , , Xin-Gui and Huang، نويسنده , , Mei-Rong and Hua، نويسنده , , Yi-Min and Zhu، نويسنده , , Mei-Fang and Chen، نويسنده , , Qun، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2004
Pages :
12
From page :
4693
To page :
4704
Abstract :
Oxidative copolymerization of 8-aminoquinoline (AQ) and o-anisidine (AS) using ammonium persulfate as oxidant was studied under various polymerization conditions and fine and uniform copolymer particles of several micrometers, determined by laser particle size and atomic force microscopic analyses, were synthesized simply. The polymerization yield, molecular weight, solubility, electroconductivity, and thermostability of the copolymers were systematically studied by changing the comonomer ratio, polymerization temperature, monomer/oxidant ratio, and acidic medium. Single chain configuration of the copolymers with various AQ/AS ratios was simulated and well related to the intrinsic viscosity. The macromolecular structure of the resulting copolymers was wholly characterized by elementary analysis, IR, UV–vis, high-resolution 1H NMR, and solid-state high-resolution 13C NMR. The results show that the oxidative copolymerization of AQ and AS is exothermic. All copolymers are totally soluble in H2SO4, HCOOH, m-cresol but their solubility in other solvents depends significantly on the comonomer ratio, and also on the polymerization conditions. The oxidative polymer obtained is a real copolymer containing AQ and AS units rather than a mixture of two homopolymers. The AQ content calculated based on the 1H NMR spectra of the copolymers is slightly higher than feed AQ content when feed AQ content is lower than 70 mol%. However, the AQ content calculated based on the 13C NMR and elementary analyses is lower than the feed AQ content when the AQ feed content is higher than 50 mol%. A peculiar dependency of molecular weight and electroconductivity of the copolymers on the AQ/AS ratio was observed. The decomposition temperature of the copolymers rises with increasing AQ content. Therefore, the thermostability of the copolymers increases with increasing AQ content due to its high aromaticity.
Keywords :
Aminoquinoline , Structure and properties , Oxidative copolymerization
Journal title :
Polymer
Serial Year :
2004
Journal title :
Polymer
Record number :
1721923
Link To Document :
بازگشت