Author/Authors :
Deng، نويسنده , , Chao and Rong، نويسنده , , Guangzhuo and Tian، نويسنده , , Huayu and Tang، نويسنده , , Zhaohui and Chen، نويسنده , , Xuesi and Jing، نويسنده , , Xiabin، نويسنده ,
Abstract :
A biodegradable amphiphilic triblock copolymer of poly(ethylene glycol)-b-poly(l-lactide)-b-poly(l-glutamic acid) (PEG-b-PLLA-b-PLGA) was obtained by catalytic hydrogenation of poly(ethylene glycol)-b-poly(l-lactide)-b-poly(γ-benzyl-l-glutamic acid) (PEG-b-PLLA-b-PBLGA) synthesized by the ring-opening polymerization (ROP) of N-carboxyanhydride of γ-benzyl-l-glutamate (BLG-NCA) with amino-terminated MPEG-b-PLLA-NH2 as a macroinitiator. MPEG-b-PLLA-NH2 converted from MPEG-b-PLLA-OH first reacted with tert-Butoxycarbonyl-l-phenylalanine (Phe-NBOC) and dicyclohexylcarbodiimide (DCC) and then deprotected the tert-butoxycarbonyl group. MPEG-b-PLLA-OH was prepared by ROP of l-lactide with monomethoxy poly(ethylene glycol) in the presence of stannous octoate. The triblock copolymer and its diblock precursors were characterized by 1H NMR, FTIR, GPC and DSA (drop shape analysis) measurements. The lengths of each block polymers could be tailored by molecular design and the ratios of feeding monomers. The triblock polymer PEG-b-PLLA-b-PLGA containing carboxyl groups showed obviously improved hydrophilic properties and could be a good potential candidate as a drug delivery carrier.