• Title of article

    Novel amphiphilic carbon black composite nanoparticles from TEMPO-terminated polymer and TEMPO-terminated block copolymer grafted carbon black

  • Author/Authors

    Lee، نويسنده , , Chia-Fen and Yang، نويسنده , , Cheng-Che and Wang، نويسنده , , Lee-Yih and Chiu، نويسنده , , Wen-Yen، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2005
  • Pages
    10
  • From page
    5514
  • To page
    5523
  • Abstract
    The purpose of this study was to modify the surface characteristics of CB so as to prevent the aggregation of CB to provide the dispersibilities in either H2O or organic solvent. In this study, five kinds of hydrophilic TEMPO-terminated polymer, hydrophobic TEMPO-terminated polymer and amphiphilic TEMPO-terminated block copolymer were synthesized. The five kinds of TEMPO-terminated polymers were: (1) poly(4-acetoxystyrene) (PAS-T), (2) poly(4-hydroxystyrene) (PHS-T), (3) polystyrene (PS-T), (4) poly(4-acetoxystyrene)-block-polystyrene (PAS-b-PS-T), (5) poly(4-hydroxystyrene)-block-polystyrene (PHS-b-PS-T). These TEMPO-terminated polymers with desired molecular weights and specific structures were synthesized by using the method of living radical polymerization in the presence of 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO). These TEMPO-terminated polymers and TEMPO-terminated block copolymers were grafted onto the surface of CB through a reaction of polymer radicals trapped by CB, so as to obtain the TEMPO-terminated polymer/CB and TEMPO-terminated block copolymer/CB composite nanoparticles. Various variables such as reaction time, reaction temperature, amount of TEMPO-terminated polymer, molecular weight of TEMPO-terminated polymer and amount of CB all of which influenced the grafting efficiency were investigated. Besides, the stability of the composite nanoparticles, which dispersed in H2O or organic solvent, was investigated by laser light scattering. The amphiphilic composite nanoparticles, PHS-T/CB and PHS-b-PS-T/CB, which dispersed well in both H2O and organic solvent, were synthesized successfully in this work.
  • Keywords
    composite nanoparticles , amphiphilic , Living radical polymerization
  • Journal title
    Polymer
  • Serial Year
    2005
  • Journal title
    Polymer
  • Record number

    1723101