Title of article
Hamilton equations for elasticae in the Euclidean 3-space
Author/Authors
J. and Pozo Coronado، نويسنده , , L.M.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2000
Pages
13
From page
248
To page
260
Abstract
The variational problem on spatial curves defined by the integral of the squared curvature, whose solutions are the elasticae or nonlinear splines, is analyzed from the Hamiltonian point of view, using a procedure developed by Muñoz Masquéand Pozo Coronado [J. Muñoz Masqué, L.M. Pozo Coronado, J. Phys. A 31 (1998) 6225–6242]. The symmetry of the problem under rigid motions is then used to reduce the Euler–Lagrange equations to a first-order dynamical system.
Keywords
Jacobi–Ostrogradski momenta , Poincaré–Cartan form , Elastica , Generalized symmetries , Hamilton–Cartan equations , Spline curves
Journal title
Physica D Nonlinear Phenomena
Serial Year
2000
Journal title
Physica D Nonlinear Phenomena
Record number
1723784
Link To Document