Title of article :
Fracture characteristics and deformation behavior of heterophasic ethylene–propylene copolymers as a function of the dispersed phase composition
Author/Authors :
Doshev، نويسنده , , P. and Lach، نويسنده , , R. and Lohse، نويسنده , , G. and Heuvelsland، نويسنده , , A. and Grellmann، نويسنده , , W. and Radusch، نويسنده , , H.-J.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2005
Pages :
12
From page :
9411
To page :
9422
Abstract :
The deformation and fracture behavior of in reactor produced heterophasic copolymers, comprising a polypropylene (PP) matrix and an ethylene propylene copolymer (EPC) dispersed phase, have been studied as a function of the dispersed phase composition (ethylene/propylene ratio). Conventional and instrumented Charpy as well as instrumented drop weight tests were employed to quantify the response of the materials to impact loading. Scanning and high-voltage electron microscopy was used for characterization of the deformation mechanisms. Decreasing ethylene content of the EPC led to an enhancement of the matrix/dispersed phase compatibility, reduction of the dispersed phase particle size and therewith to a systematic increase of the impact strength at room temperature and a decrease of the brittle-to-tough transition temperature (TBTT) of the materials. The low temperature impact strength was predominantly dependent upon the glass transition temperature of the EPC phase. The results are discussed from the viewpoint of interfacial interactions, size and spatial packing of the dispersed phase domains and the observed deformation mechanisms.
Keywords :
Fracture mechanics parameters , Polypropylene/ethylene–propylene copolymer blends , Ethylene/propylene ratio
Journal title :
Polymer
Serial Year :
2005
Journal title :
Polymer
Record number :
1723936
Link To Document :
بازگشت