Title of article :
Parametrising the attractor of the two-dimensional Navier–Stokes equations with a finite number of nodal values
Author/Authors :
Peter K. Friz* and James C. Robinson، نويسنده , , Peter and Robinson، نويسنده , , James C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
We consider the solutions lying on the global attractor of the two-dimensional Navier–Stokes equations with periodic boundary conditions and analytic forcing. We show that in this case the value of a solution at a finite number of nodes determines elements of the attractor uniquely, proving a conjecture due to Foias and Temam. Our results also hold for the complex Ginzburg–Landau equation, the Kuramoto–Sivashinsky equation, and reaction–diffusion equations with analytic nonlinearities.
Keywords :
Navier–Stokes equations , Gevrey regularity , global attractor , Determining nodes
Journal title :
Physica D Nonlinear Phenomena
Journal title :
Physica D Nonlinear Phenomena