Title of article :
Actions of the Neumann systems via Picard–Fuchs equations
Author/Authors :
Dullin، نويسنده , , Holger R. and Richter، نويسنده , , Peter H. and Veselov، نويسنده , , Alexander P. and Waalkens، نويسنده , , Holger، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
25
From page :
159
To page :
183
Abstract :
The Neumann system describing the motion of a particle on an n-dimensional sphere with an anisotropic harmonic potential has been celebrated as one of the best understood integrable systems of classical mechanics. The present paper adds a detailed discussion and the determination of its action integrals, using differential equations rather than standard integral formulas. We show that the actions of the Neumann system satisfy a Picard–Fuchs equation which in suitable coordinates has a rather simple form for arbitrary n. We also present an explicit form of the related Gauß–Manin equations. These formulas are used for the numerical calculation of the actions of the Neumann system.
Keywords :
Action variables , Neumann system , integrable systems , Picard–Fuchs equation
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2001
Journal title :
Physica D Nonlinear Phenomena
Record number :
1724302
Link To Document :
بازگشت