Title of article :
Nonintegrability and chaos in the anisotropic Manev problem
Author/Authors :
Diacu، نويسنده , , Florin and Santoprete، نويسنده , , Manuele، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
The anisotropic Manev problem, which lies at the intersection of classical, quantum, and relativity physics, describes the motion of two point masses in an anisotropic space under the influence of a Newtonian force-law with a relativistic correction term. Using an extension of the Poincaré–Melnikov method, we first prove that for weak anisotropy, chaos shows up on the zero-energy manifold. Then we put into the evidence a class of isolated periodic orbits and show that the system is nonintegrable. Finally, using the geodesic deviation approach, we prove the existence of a large nonchaotic set of uniformly bounded and collisionless solutions.
Keywords :
Manev problem , Anisotropy , Chaos , Geodesic deviation
Journal title :
Physica D Nonlinear Phenomena
Journal title :
Physica D Nonlinear Phenomena