Title of article :
The window Josephson junction: a coupled linear nonlinear system
Author/Authors :
Benabdallah، نويسنده , , A. and Caputo، نويسنده , , J.G. and Flytzanis، نويسنده , , N.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
23
From page :
79
To page :
101
Abstract :
We investigate the interface coupling between the two-dimensional sine-Gordon equation and the two-dimensional wave equation in the context of a Josephson window junction using a finite volume numerical method and soliton perturbation theory. The geometry of the domain as well as the electrical coupling parameters are considered. When the linear region is located at each end of the nonlinear domain, we derive an effective one-dimensional model, and using soliton perturbation theory, compute the fixed points that can trap either a kink or antikink at an interface between two sine-Gordon media. This approximate analysis is validated by comparing with the solution of the partial differential equation and describes kink motion in the one-dimensional window junction. Using this, we analyze steady-state kink motion and derive values for the average speed in the one- and two-dimensional systems. Finally, we show how geometry and the coupling parameters can destabilize kink motion.
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2002
Journal title :
Physica D Nonlinear Phenomena
Record number :
1724502
Link To Document :
بازگشت