Title of article :
Integrable equations arising from motions of plane curves
Author/Authors :
Chou، نويسنده , , Kai-Seng and Qu، نويسنده , , Changzheng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
25
From page :
9
To page :
33
Abstract :
The motion of plane curves in Klein geometry is studied. It is shown that the KdV, Harry–Dym, Sawada–Kotera, Burgers, the defocusing mKdV hierarchies, the Camassa–Holm and the Kaup–Kupershmidt equation naturally arise from the motions of plane curves in SL(2)-, Sim(2)-, SA(2)- and A(2)-geometries. These local and nonlocal dynamics conserve global geometric quantities of curves such as perimeter and enclosed area. Motions of curves in Euclidean, special linear and similarity geometries corresponding to the traveling wave solutions of the mKdV, KdV and Burgers equations are discussed.
Keywords :
Klein geometry , traveling wave , Integrable equations , Motion of plane curves , Lie algebra
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2002
Journal title :
Physica D Nonlinear Phenomena
Record number :
1724532
Link To Document :
بازگشت