• Title of article

    Hamiltonian and chaotic attitude dynamics of an orbiting gyrostat satellite under gravity-gradient torques

  • Author/Authors

    Kuang، نويسنده , , Jinlu and Leung، نويسنده , , A.Y.T. and Tan، نويسنده , , Soonhie، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    19
  • From page
    1
  • To page
    19
  • Abstract
    The chaotic instability of the spinning motion of a gyrostat satellite is investigated in this paper. The circularly orbiting satellite under the action of gravity-gradient torques consists of a platform and axisymmetric wheels rotating with fixed relative speeds. The Hamiltonian equations in terms of Deprit’s canonical variables are derived for the attitude motion. An explicit criterion is established to predict the occurrence of attitude chaos in the sense of Smale’s horseshoe. The Poincaré–Arnold–Melnikov (PAM) integral developed by Holmes and Marsden [Indiana Univ. Math. J. 32 (1983) 273] is adopted. A fixed speed of the wheel of a torque-free bias momentum satellite is identified to ensure the existence of homoclinic orbits. The criterion is applied to predict the attitude chaos for both the bias momentum satellites and the orbiting symmetric gyrostat satellites under gravity-gradient torques. The Poincaré map is used to crosscheck the analytical results.
  • Keywords
    Poincaré–Arnold–Melnikov integral , homoclinic orbits , Hamiltonian , Deprit’s variables , Chaos , Gyrostat satellites
  • Journal title
    Physica D Nonlinear Phenomena
  • Serial Year
    2003
  • Journal title
    Physica D Nonlinear Phenomena
  • Record number

    1725231