Title of article :
Fractality of deterministic diffusion in the nonhyperbolic climbing sine map
Author/Authors :
Korabel، نويسنده , , N and Klages، نويسنده , , R، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
23
From page :
66
To page :
88
Abstract :
The nonlinear climbing sine map is a nonhyperbolic dynamical system exhibiting both normal and anomalous diffusion under variation of a control parameter. We show that on a suitable coarse scale this map generates an oscillating parameter-dependent diffusion coefficient, similarly to hyperbolic maps, whose asymptotic functional form can be understood in terms of simple random walk approximations. On finer scales we find fractal hierarchies of normal and anomalous diffusive regions as functions of the control parameter. By using a Green–Kubo formula for diffusion the origin of these different regions is systematically traced back to strong dynamical correlations. Starting from the equations of motion of the map these correlations are formulated in terms of fractal generalized Takagi functions obeying generalized de Rham-type functional recursion relations. We finally analyze the measure of the normal and anomalous diffusive regions in the parameter space showing that in both cases it is positive, and that for normal diffusion it increases by increasing the parameter value.
Keywords :
Deterministic diffusion , Nonhyperbolic maps , Fractal diffusion coefficient , anomalous diffusion , Periodic windows
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2004
Journal title :
Physica D Nonlinear Phenomena
Record number :
1725270
Link To Document :
بازگشت