Title of article
Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems
Author/Authors
Kapitula، نويسنده , , Todd and Kevrekidis، نويسنده , , Panayotis G. and Sandstede، نويسنده , , Bjِrn، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2004
Pages
20
From page
263
To page
282
Abstract
Spectra of nonlinear waves in infinite-dimensional Hamiltonian systems are investigated. We establish a connection via the Krein signature between the number of negative directions of the second variation of the energy and the number of potentially unstable eigenvalues of the linearization about a nonlinear wave. We apply our results to determine the effect of symmetry breaking on the spectral stability of nonlinear waves in weakly coupled nonlinear Schrِdinger equations.
Keywords
Nonlinear , Krein signature , Hamiltonian
Journal title
Physica D Nonlinear Phenomena
Serial Year
2004
Journal title
Physica D Nonlinear Phenomena
Record number
1725688
Link To Document