Title of article :
Laplacian growth and Whitham equations of soliton theory
Author/Authors :
Krichever، نويسنده , , I. and Mineev-Weinstein، نويسنده , , M. and Wiegmann، نويسنده , , P. and Zabrodin، نويسنده , , A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
28
From page :
1
To page :
28
Abstract :
The Laplacian growth (the Hele-Shaw problem) of multiply-connected domains in the case of zero surface tension is proven to be equivalent to an integrable system of Whitham equations known in soliton theory. The Whitham equations describe slowly modulated periodic solutions of integrable hierarchies of nonlinear differential equations. Through this connection the Laplacian growth is understood as a flow in the moduli space of Riemann surfaces.
Keywords :
Laplacian growth , Hele-Shaw problem , free boundary problem , Solution theory , Whitham equation
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2004
Journal title :
Physica D Nonlinear Phenomena
Record number :
1725800
Link To Document :
بازگشت