Title of article :
Can two chaotic systems give rise to order?
Author/Authors :
Almeida، نويسنده , , J. and Peralta-Salas، نويسنده , , D. and Romera، نويسنده , , M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
9
From page :
124
To page :
132
Abstract :
The recently discovered Parrondoʹs paradox claims that two losing games can result, under random or periodic alternation of their dynamics, in a winning game: “losing + losing = winning”. In this paper we follow Parrondoʹs philosophy of combining different dynamics and we apply it to the case of one-dimensional quadratic maps. We prove that the periodic mixing of two chaotic dynamics originates an ordered dynamics in certain cases. This provides an explicit example (theoretically and numerically tested) of a different Parrondian paradoxical phenomenon: “chaos + chaos = order”.
Keywords :
Parrondoיs paradox , Chaotic dynamics , Stable periodic orbit
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2005
Journal title :
Physica D Nonlinear Phenomena
Record number :
1725936
Link To Document :
بازگشت