Title of article
Vanishing viscosity limit for incompressible flow inside a rotating circle
Author/Authors
Lopes Filho، نويسنده , , M.C. and Mazzucato، نويسنده , , A.L. and Nussenzveig Lopes، نويسنده , , H.J.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2008
Pages
10
From page
1324
To page
1333
Abstract
In this article we consider circularly symmetric incompressible viscous flow in a disk. The boundary condition is no-slip with respect to a prescribed time-dependent rotation of the boundary about the center of the disk. We prove that, if the prescribed angular velocity of the boundary has finite total variation, then the Navier–Stokes solutions converge strongly in L 2 to the corresponding stationary solution of the Euler equations when viscosity vanishes. Our approach is based on a semigroup treatment of the symmetry-reduced scalar equation.
Keywords
Euler and Navier–Stokes , Vanishing viscosity limit , Circular symmetry , Boundary layer , Rotating boundary
Journal title
Physica D Nonlinear Phenomena
Serial Year
2008
Journal title
Physica D Nonlinear Phenomena
Record number
1726486
Link To Document