Title of article :
Modified particle filter methods for assimilating Lagrangian data into a point-vortex model
Author/Authors :
Spiller، نويسنده , , Elaine T. and Budhiraja، نويسنده , , Amarjit and Ide، نويسنده , , Kayo and Jones، نويسنده , , Chris K.R.T.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
9
From page :
1498
To page :
1506
Abstract :
The process of assimilating Lagrangian (particle trajectory) data into fluid models can fail with a standard linear-based method, such as the Kalman filter. We implement a particle filtering approach that affords a nonlinear estimation and does not impose Gaussianity on either the prior or the posterior distributions at the update step. Several schemes for reinitializing the particle filter, specifically tailored to the Lagrangian data assimilation problem, are applied to a point-vortex system. A comparison with the Extended Kalman Filter (EKF) for the same system demonstrates the effectiveness of particle filters for the assimilation of complex, nonlinear Lagrangian data.
Keywords :
resampling , Lagrangian data assimilation , Extended Kalman filters , particle filters
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2008
Journal title :
Physica D Nonlinear Phenomena
Record number :
1726508
Link To Document :
بازگشت