Title of article :
Poisson geometry and first integrals of geostrophic equations
Author/Authors :
Khesin، نويسنده , , Boris and Lee، نويسنده , , Paul، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
6
From page :
2072
To page :
2077
Abstract :
We describe first integrals of geostrophic equations, which are similar to the enstrophy invariants of the Euler equation for an ideal incompressible fluid. We explain the geometry behind this similarity, give several equivalent definitions of the Poisson structure on the space of smooth densities on a symplectic manifold, and show how it can be obtained via the Hamiltonian reduction from a symplectic structure on the diffeomorphism group.
Keywords :
Geostrophic equations , Enstrophy invariants , Poisson structure , Wasserstein space , Hamiltonian reduction , Diffeomorphism group
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2008
Journal title :
Physica D Nonlinear Phenomena
Record number :
1726580
Link To Document :
بازگشت